
FEATURE ARTICLE

Development of Accurate Quantum Dynamical Methods for Tetraatomic Reactions

John Z. H. Zhang,* Jiqiong Dai, and Wei Zhu
Department of Chemistry, New York UniVersity, New York, New York 10003

ReceiVed: July 11, 1996; In Final Form: December 5, 1996X

The time-dependent quantum wavepacket approach has proven to be a powerful computational approach for
studying large scale quantum reactive scattering problems involving three or more atoms. This article presents
an account of some recent development of time-dependent wavepacket methods for accurate quantum dynamics
calculation of tetraatomic reactions in full dimensional space. The salient features of the time-dependent
approach and important computational strategies that have been employed to successfully calculate state-
specific reaction dynamics for realistic four-atom reactions are discussed. Some results from the application
of the time-dependent methods to several specific reactions, in particular the benchmark H2 + OH reaction,
are presented. The article is then highlighted with the presentation of a general reactant-product decoupling
method for state-to-state reactive scattering study. Finally, the future outlook of the theoretical study of
polyatomic reaction dynamics is discussed.

I. Introduction

The ability to accurately predict the outcome of a chemical
reaction in detail on the basis of first principles has long been
a holy grail for theoretical chemists since the discovery of
quantum mechanics in 1920s. It was known that chemical
reactions are results of molecular collision processes which can
be rigorously described by quantum reactive scattering theory.
In principle, the whole scenario seems rather straightforward.
First, one performsab initio quantum chemistry calculations to
generate electronic energies at various nuclear configurations
and to fit them into a global potential energy surface. Second,
one performs quantum reactive scattering calculations to obtain
detailed dynamics informations such as reaction probabilities,
cross sections, rate constants,etc. In practice, however, such
theoretical endeavors are a formidable computational task at
best because quantitatively accurate calculations for the majority
of chemical reactions are enormously complex due to inherent
mathematical difficulties in solving the many-body Schro¨dinger
equation.
Beside huge computational costs required in electronic

structure calculations to generate accurate potential energy
surfaces, which is outside the topic of the present article, the
quantum reactive scattering calculation itself presents a major
challenge to theoretical dynamicists in the study of reaction
dynamics. From the very beginning, the theory of quantum
reactive scattering has focused on the development of compu-
tational methodologies for atom-diatom reaction A+ BC: the
simplest possible chemical reaction systems. In particular, the
H + H2 and its isotopically substituted reactions have dominated
the theoretical and computational study in reactive scattering
for more than two decades.1,2 Since the first report of three-
dimensional quantum calculations for the H+ H2 reaction on
the empirical PK2 potential energy surface in 1976,1 it took
another decade or so for theoretical chemists to fully develop
general and powerful numerical methods to compute atom-
diatom reactions. Thanks to the development of new compu-

tational methods3-11 and the rapid increase in the speed of
modern computers, tremendous progress has been made during
the past decade in the theory and computation of atom-diatom
reactive scattering. Rigorous and detailed quantum dynamics
calculations for H+ H2 and other simple triatomic reactions in
three-dimensional space have been reported, and some excellent
agreements between exact quantum dynamics calculations and
experiments have been obtained for H+ H2 and its isotopic
reaction using algebraic variational methods and hyperspherical
coordinate methods as recently reviewed in ref 2. Very recent
dynamics calculations for H+ H2

12 and F+ H2
13 show that

the remaining discrepancy between dynamics calculation and
experiment for these two systems appears to be entirely
attributable to the deficiency in the part of the potential energy
surface (PES) or its proper treatment in the dynamics calculation,
not in the part of the dynamics calculation itself.
Of more practical interest to chemistry communities is,

however, polyatomic reactions that involve more than three
atoms. But going beyond the atom-diatom to polyatomic
reactive scattering presents a new grand challenge to quantum
dynamicists. The major challenge in theoretical treatment is
how to handle the exponential increase of computational cost
due to the increase of mathematical dimensionalities when the
number of atoms in the system increases. For example, the
dimensionality (internal degrees of freedom) increases from
three for a triatomic system to six for a tetraatomic systemsa
two-fold increase in dimensionality! Since the addition of each
atom adds three internal degrees of freedom to the system, it is
interesting to note that the transition from triatomic to tetra-
atomic systems causes the maximum relative increase in
dimensionality (100%). Thus the rigorous dynamical treatment
for tetraatomic reactions is hardly a trivial extension of the
previous treatments for triatomic reactions and its success is a
major advance in reaction dynamics. In fact, a number of
computational methodologies that work effectively for simple
triatomic systems prove difficult or even impossible to apply
at present to polyatomic reactions due to the requirement of
impractically large computational resources. For example, inX Abstract published inAdVance ACS Abstracts,March 15, 1997.
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algebraic variational approach, one is required to invert the
Hamiltonian matrix to solve linear algebraic equations. Even
for a simple tetraatomic reaction like H2 + OH, the size of the
Hamiltonian matrix is prohibitively too large to be inverted
directly on today’s computers. It is therefore necessary to utilize
alternative methods such as iterative methods to solve linear
algebraic equations due to their lower computational scaling
than that of matrix inversion. Thus the critical measure of the
applicability of any method to polyatomic reactions is the scaling
of its computational cost with respect to the number of basis
functions or degrees of freedom. Many standard time-
independent scattering methods such as variational methods or
propagation methods scale asN3 with the number of basis
functionsN and are thus difficult to extend to large systems.
Until a few years ago, the reduced dimensionality approach
(RDA) of Bowman and co-workers14 and Clary and co-
workers15 provided the only viable means for tackling the four-
atom reactive scattering problem in which a four-atom reaction
system is reduced to an effective atom-diatom system through
elimination of three internal coordinates, either by applying
adiabatic approximation for three internal angular variables14

or by restricting the system to certain geometric configurations.15

Although the RDA methods are computationally simple to apply
and can often give reasonably good results when all the missing
degrees of freedom are properly accounted for, they generally
do not give definitive results and/or predictions of the dynamics
of the reactive scattering problem for a given potential energy
surface. The status is similar for other dynamically approximate
methods including the IOSA method,16 the mixed quantum/
classical method,17 and full-dimensional planar models.18-20

These approximate methods are very useful for studying the
dynamics of complex reactions for which rigorous dynamical
methods are not available.
The ultimate goal in quantum reaction dynamics is to develop

rigorous quantum methods that can provide definitive results
and/or predictions for dynamics of polyatomic reactions for
given potential energy surfaces. Significant progress has been
made in that direction during the past few years, and the above
goal has been at least partially realized for a few important
benchmark tetraatomic reactions. Rigorous quantum reactive
scattering calculations in full-dimensional space have been
reported for reactions of H2 + OH,21-25 DH + OH,26,27D2 +
OH,28 and HO+ CO,29 including calculations of initial state
specific cross sections for H2 + OH and its isotope reac-
tions.22,23,27,28 Most recently, quantum state-to-state calculations
have become available for the H2 + OH reaction30,31 and its
reverse reaction H+ H2O.32,33

The main driving force behind the recent success of rigorous
quantum dynamics studies for tetraatomic reactions mentioned
above is the development of efficient time-dependent (TD)
methods for solving the time-dependent Schro¨dinger equation34

The TD wavepacket approach has some very attractive features
for large-scale numerical calculations. The most fundamental
property of the TD approach is that it solves an initial value
problem and calculates the wave function for one initial state
at a time. Therefore, for any desired initial state, the compu-
tational effort in the TD approach is proportional toNR (1 < R
< 2)35,36 whereN is the number of basis functions (a very large
number). This reduction in computational scaling is crucial for
large-scale quantum calculations as mentioned above. Also in
the TD approach, a single wavepacket calculation can give
dynamical quantities such asS matrix elements or reaction

probabilities over a wide range of energies. The TD approach
of directly provides dynamics information in real time which
greatly facilities the analysis of the underlying dynamics. We
will present in this article some basic computational methods
and numerical techniques of the TD wave packet approach to
reactive scattering problems as well as some applications of
the methods to realistic four-atom reactions in order to help
provide a clear picture of the status of recent theoretical/
computational development in this field. Most computational
results presented in this article are for the benchmark H2 + OH
reaction. In addition, we will also present a newly developed
general reactant-product decoupling (RPD) method which is
extremely promising for future state-to-state reactive scattering
studies of polyatomic reactions.
This article is organized as follows: Section II presents the

general methodology of the time-dependent wavepacket ap-
proach to quantum reactive scattering and various numerical
techniques that are crucial to the success of the TD approach
to large scale reactive scattering calculations for polyatomic
reactions. Section III presents some benchmark results from
the applications of the TD methods to several important
tetraatomic reactions including H2 + OH and its isotopically
substituted reactions and the resonance-dominated HO+ CO
reaction. In section IV, we discuss a new and general
methodology for efficient calculation of state-to-state reactive
scattering dynamics for polyatomic reactions using the idea of
divide and conquer. Finally, we give a brief discussion about
the future prospect of the TD approach and speculate on possible
future directions in this field.

II. Time-Dependent Wavepacket Approach

A. Selection of Coordinates and Basis Functions.In this
section, we are primarily interested in the calculation of total
(final state summed) reaction probabilities while the discussion
on complete state-to-state reactive scattering calculation will
be given in the following sections. As is well-known to the
reactive scattering community, the choice of suitable coordi-
nates, as well as the basis functions associated with them is at
the heart of any reactive scattering problem. The Jacobi
coordinates are natural coordinates for describing wave functions
that are confined primarily to the corresponding arrangement
channel space. Thus, the Jacobi coordinates of the reactant
arrangement is generally a good choice for calculating initial-
state-selected but final-state-summed reaction probabilities
because we only need to propagate the wave function to just
beyond the transition state region. Specifically for a diatom-
diatom reaction AB+ CD to produce atom-triatom products
A + BCD and/or B+ ACD, the Hamiltonian expressed in the
reactant Jacobi coordinates shown in Figure 1 in full dimensions
(6D) can be written as

ip
∂

∂t
Ψ(t) ) HΨ(t) (1.1)

Figure 1. Jacobi coordinates for the reaction AB+ CDf A + BCD.
The angleφ is the out-of-plane torsional angle.
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whereµ is the reduced mass between the center-of-mass of AB
and CD,JB the total angular momentum operator, andjB1 and jB2
the rotational angular momentum operators of AB and CD,
which are coupled to formjB12. The reference diatomic
vibrational Hamiltonianhi(ri) (i ) 1 and 2) is defined as

whose eigenfunctions and eigenenergies areφνi andενi, respec-
tively, andVi is a reference diatomic vibrational potential. The
expression for the Hamiltonian given in terms of the Jacobi
coordinates for the A+ BCD arrangement is very similar.
Before the numerical solution for the TD wave function can

be started, one needs to find a suitable basis set to expand the
TD wave function. For a general diatom-diatom reaction of
the type AB+ CD, one can expand the TD wave function in
terms of body-fixed (BF) rovibrational eigenfunctions defined
in terms of the reagent Jacobi coordinates as22,23

wheren is the translational basis label,ν denotes (ν1, ν2), j
denotes (j1, j2, j12), (ν0, j0) the initial rovibrational state, andε
the parity of the system defined asε ) (-1)j1+j2+L with L being
the orbital angular momentum quantum number. The deter-
mination of the TD coefficientFnνjK,ν0j0K0

JMε (t) gives the solution
of the TD Schro¨dinger equation. In order to save computational
costs, we separate the interaction region from the asymptotic
region in the dynamics calculation.37-39 A simple way to
implement this is to use nondirect product basis functions,
similar to the ideas of ref 37-39 and to define normalized
translational basis function as

where R2 and R4 define, respectively, the interaction and
asymptotic grid,23 andνasy is the number of energetically open
vibrational states plus a few closed vibrational states of the
reactive AB diatom. The use of nondirect product basis makes
it simple to separate the asymptotic region from the interaction
region, and thus a substantial amount of computational savings
can be realized.21-23

The coupled total angular momentum eigenfunctionsYjK
JMε in

eq 2.3 can be written as23,40,41

whereDK,M
J (ΘΦΨ) is the Wigner rotation matrix42 with three

Euler angles(ΘΦΨ) and Yj1j2
j12K is the angular momentum

eigenfunction ofj12,23,40,41

where yjm are spherical harmonics. Note in eq (2.5) the
restrictionε(-1)j1+j2+j12+J ) 1 for K ) 0.
B. Time Propagation of the Wave Function. The split-

operator propagator43 is used to carry out the time propagation
of the wavepacket

where the reference HamiltonianH0 is defined as

and the effective potential of operatorU in eq 2.7 is defined as

The matrix version of eq 2.7 for the expansion coefficient vector
F is then given by

whereH0 is the diagonal matrix defined in ref 23.
At a given quadrature point (Rm, r1n, r2l), the standard method

for handling the potential operatore-iU∆ is by diagonalizing
the potential matrixU in the coupled angular basisYjK

JMε as is
done in previous studies.21-23 This approach preserves the
unitarity of the operatore-iV∆ and is efficient when the size of
the angular basisYjK

JMε is relatively small. However, if the
coupled angular basis is large, this approach can become
computationally expensive because one needs to calculate and
store all the transformation matrices that diagonalize the
potential matricesU at all the radial grid points. Thus for large
systems, the matrix diagonalization method will require a large-
memory computer. We thus devise a normalized quadrature
scheme for treating angular quadratures which avoids explicit
matrix diagonalization and therefore does not require large
computer memory for matrix storage. It is worthwhile to point
out that this normalization procedure is only necessary when
multidimensional nondirect product basis functions, such as the
coupled angular momentum eigenfunctions of eq 2.6, are used.
For direct product basis functions, one can use the DVR method
to rigorously preserve the unitarity of the propagator. This
normalization procedure has been discussed in ref 27 and 28
and we present it briefly in the following.
Utilizing the split-operator scheme again, we can splite-iU∆

as

whereVrot andV are defined in eq 2.9. The operation of the
operatore-iVrot∆/2 on the wave function is straightforward because
it is diagonal in the coupled angular momentum representation.
The exponential potential operatore-iV∆ is now treated by
quadrature approximation for which we define a transformation
matrixQ by

where (θ1i θ2k φl) are angular quadratures and (W1iW2kWl) are
the corresponding angular weights. Thus eq 2.11 is ap-

hi(ri) ) - p2

2µi

∂
2

∂ri
2

+ Vi(ri) (2.2)
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F(t + ∆) ) exp(-iH0∆/2) exp(-iU∆) exp(-iH0∆/2)F(t)
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e-iU∆ ) e-iVrot∆/2 e-iV∆ e-iVrot∆/2 (2.11)

Qikl
jK ) xW1iW2kWl 〈θ1iθ2k φl|YjKJMε〉 (2.12)
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proximated by the angular quadrature

whereQ+ is the complex conjugate ofQ. In general, one does
not need to store the large matrixQ but only a few small
submatrices contained in eq 2.12.
Because the transformation matrixQ, which transforms from

coupled angular momentum representation to grid representation,
is not unitary, we therefore use a simple method to retain the
unitarity of the propagator. Specifically, we renormalize the
wave function after it has been propagated by the operatore-iV∆.
The detailed procedure has been described in refs 27 and 29.
C. Potential-Averaged Treatment for Rigid Bonds. For

a polyatomic reaction with a nonreactive bond, such as the OH
bond in the H2 + OH reaction, one often does not have to treat
the nonreactive OH bond length explicitly in the dynamics
calculation. The PA5D model treats the vibration of the
nonreactive CD bond diabatically which results in an effective
5D model in which the effective 5D potential is simply obtained
by averaging the original PES over the vibrational function of
the nonreactive CD (or OH) bond. Specifically, the interaction
potentialV(rb1, rb2, RB) in eq 2.9 is obtained by averaging the 6D
potential over the vibrational function of the nonreactive CD,23

i.e.,

and the rotation constant for the nonreactive diatom CD is given

by Bν2 ) 〈φν2|1 / 2µ2r2
2|φν2〉. The study in ref 23 showed that

the PA5D treatment is significantly better than the simpler rigid-
bond treatment and that it gives reaction probabilities that are
essentially indistinguishable from those of full 6D calculation
for the OH + H2 reaction. This is very encouraging for
polyatomic reactions because it demonstrates the practicality
of eliminating the spectator bond lengths from explicit dynamics
calculations.
D. Extraction of Initial State-Selected Dynamics. From

the propagation of an initial wavepacket|øi(0)〉, the time-
independent (TI) wave functionψi

+(E) can be obtained by
Fourier transforming the TD wave function23

and similarly for the derivative of the wave functionψi
+′(E).

The coefficientai(E) is easily evaluated from the free-energy-
normalized asymptotic functionφi(E) asai(E) ) 〈φi(E)|øi(0)〉.23
The total reaction probability from a given initial statei can be
calculated by using the flux formula23

The initial wavepacket|øi(0)〉 is usually chosen to be a
Gaussian function with an average momentumkO traveling
toward the interaction region

multiplied by the internal function|ηi〉 in eq 2.3. In actual
propagation, the TD wavefunction is absorbed at the edges of
the grid to avoid boundary reflection.44

E. Extraction of State-to-State Dynamics. The simplest
approach to extract state-to-stateSmatrix elements or reaction

probabilities is to explicitly write down the asymptotic form of
the time-independent solution in the product arrangement space

where the first term in the above equation vanishes forâ * R.
Using eqs 2.15 and 2.18, it is straightforward to obtain the
following expression for the state-to-stateSmatrix element

In the above approach, one simply calculates the amplitude of
the scattering wave functionAfi (after projecting out the final
states) by Fourier transforming the TD wavefunction at a
dividing surface in the product asymptotic region. However,
the asymptotic radial function has to be known exactly at the
dividing surface, being plane wave function or Hankel function
(see discussion in ref 45). For example, if atR∞, the radial
asymptotic solution is the functionBf(R∞) instead of the plane
wave, one needs to replacee-ikfR∞(R∞) in eq 2.19.
If one only wants the absolute value of theSmatrix element
|Sfi| or the probabilityPfi ) |Sfi|2, e.g., for calculations of integral
cross sections, one can use the flux formalism to calculate
reaction probabilities,

whereAfi(E,Râ) is the radial scattering amplitude obtained from

The flux is calculated at a surface defined byRâ ) RL in the
product asymptotic space beyond which the final state interac-
tion is over. Therefore the flux is invariant with respect to
further increase of the distance. The main advantage of using
this flux formula is that one does not need to know the exact
form of the radial function atRL. Physically speaking, this is
because the elastic scattering only affects the phase of the radial
function and thus does not affect transition probabilities. This
will in general enable one to obtain converged state-to-state
reaction probability at a relatively shorter radial distance.

III. Applications to Four-Atom Reactions

A. Initial State-Selected Study for the H2 + OH Reaction.
In this subsection, we show some results of application of the

e-iU∆ ) e-iVrot∆/2Q+ e-iV∆ Qe-iVrot∆/2 (2.13)

V( rb1, rb2, RB) ) 〈φν2
|V( rb1, rb2, RB)|φν2

〉 (2.14)

ψi
+(E) ) 1

2πai(E)
∫-∞

∞
ei/p(E-H)tøi(0) dt (2.15)

Pi
R(E) ) ∑

f

|SfiR|2 ) 〈ψi
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+(E)〉 (2.16)

φkO
(R) ) ( 1

πδ2)1/4 exp[-(R- R0)
2/2δ2]e-ik0R (2.17)

ψRi
+(E)98

Râf∞ x µâ

2πp2 [-
e-ikiRR

xki |ηRi〉δRâ +

∑
m

Sâm,Ri

eikmRâ

xkm |ηâm〉] (2.18)

Sfi(E) ) 1
aRi(E)x kf

2πµâ
e-ikfR∞∫-∞

∞
dt ei/pEt〈R∞|〈ηâf|øRi(t)〉

) 1
aRi(E)x kf

2πµâ
e-ikfR∞∫-∞

∞
dt ei/pEt Afi(R∞, t) (2.19)

|Sfi|2 ) 2πpRe[A*fi(Râ, E)ν̂âAfi(Râ, E)]|Râ)RL

) 2πp2

µâ
Im[A*fi(Râ, E)

d
dRâ

Afi(Râ, E)]|Râ)RL
(2.20)

Afi(Râ, E) ) 〈Râ|〈νâf|ψRi
+(E)〉

) 1
2πpaRi(E)

∫-∞

∞
dt ei/pEt〈Râ|〈ηâf|øRi(t)〉

) 1
2πpaRi(E)

∫-∞

∞
dt eipEt Afi(Râ, t) (2.21)
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TD approach described in the previous section for calculations
of total (final state summed) reaction probabilities and cross
sections for H2 + OH and its isotopically substituted reactions
HD + OH and D2 + OH. The details of the calculation are
not given here since they have been reported previously. The
potential energy surface (PES) used for H2 + OH reaction is
the Walch-Dunning-Schatz-Elgersma PES46slightly modified
by Clary.47

The calculation for H2 + OH reaction in ref 23 demonstrated
that the potential averaged treatment (PA5D) gives essentially
the same result as the full 6D treatment for this reaction. Thus,
the potential averaged treatment for the nonreactive bond is
sufficiently accurate at least for total reaction probabilities, and
the 6D reactive scattering problem can be effectively reduced
to a 5D problem. We expect this conclusion to be generally
true for similar reactions involving nonreactive or spectator
bonds. This should result in significant savings in computational
effort for polyatomic reactions.
In Figure 2, we show reaction probabilities of all three

isotopic reactions as a function of incident kinetic energy from
the initial ground state. The reaction probability is of the order
P(H2) > P(HD) > P(D2) at fixed kinetic energies. However,
considering the vibrational energy difference among H2, HD,
and D2, the reaction probability is about the same magnitude
as a function of total energy (kinetic energy+ zero-point
energy). The study on the rotational state dependence of the
reaction probability shows strong steric effect as discussed in
refs 26-28. In particular, the maximum of the reaction
probability always shows up for thej ) 1 state of H(D)2, which
is believed to be a general phenomenon for collinearly domi-
nated reactions at zero total angular momentum.26 In addition,
the vibrational excitation of H2 is found to significantly enhance
the reaction probability while vibrational excitation of the
nonreactive OH(D) bond has little effect on reaction.23

The reaction cross section for a specific initial state is obtained
by summing the reaction probabilitiesPν0j0K0

Jε over all the
partial waves (total angular momentumJ),

where ε is the parity andKO denotes all the initial rotation
projection quantum numbers. Since the exact close-coupling
calculation forJ> 0 is extremely expensive computationally,
the standard CS approximation48,49 is used in calculations for

J> 0. For the H2 + OH reaction at ground initial state, the
cross sections for all three reactions as a function of kinetic
energy are shown in Figure 3. The order of cross sections, as
a function of kinetic energy, satisfiesσH2 > σHD > σD2. We
also show the cross sections from the reduced dimensionality
calculation (RBA) of ref 47. The comparison shows that the
RBA cross sections are significantly larger than the full-
dimensional results.
The initial state-specific thermal rate constant is given in terms

of the total integral cross section of eq 3.1 by

where Et is the translational energy. An extra factor of1/2 has
been included in eq 3.2 to account for the fact that only half of
the reagent H2(1∑) + OH(2π) collisions access the2A′ surface
which correlates with the products H2O(1A′) + H(2A′).46 We
note that the thermal rate constant defined in the above equation
involves only Boltzmann averaging over translational energy
but not rotational energy. This is not the standard definition of
thermal rate constant in which all the rotational states are
Boltzmann averaged. Therefore, comparisons of the present
rate constants with experimental and other theoretical calcula-
tions should be treated with caution. At temperatures below
1000 K, the rate constant for the H2 + OH and its isotope

Figure 2. Comparison of reaction probability for all three reactions
from initial ground state of the reactant.

σν0
j
0
(E) )

1

(2j1 + 1)(2j2 + 1)

π

k2
∑
JK0ε

(2J+ 1)Pν0j0K0
Jε (E)

(3.1)

Figure 3. Comparison of integral cross sections for all three reactions
from initial ground state of the reactant. The triangles are the RBA
(rotating bond approximation) cross sections from ref 47 for H2 + OH.

Figure 4. Comparison of reaction rate constants for all three reactions
from initial ground state of the reactant.

rν0j0
(T) ) (12)(

8kT
πµ )1/2(kT)-2∫0∞ dEtEt exp(-Et/kT)σν0j0

(Et)
(3.2)
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reactions satisfies the relationkH2 > kHD > kD2. These
relationships are somehow similar to the triatomic reaction of
O + H2 and its isotope reactions.50-53 In view of the
deficiencies of the WDSE potential energy surface and the fact
that theoretical rates are not thermally averaged over the initial
states, the agreement of theoretical rate constant with experi-
mental measurement is quite reasonable as discussed in ref 23.
Our study also found that the WDSE PES has artifacts that

cause artificial resonances at very low kinetic energies (about
0.02 eV).23 The artifacts have a significant effect on the
calculated integral cross sections and rate constants for vibra-
tionally excited H2 for the reaction of H2 + OH. The effect is
less significant for vibrationally excited D2 in D2 + OH reaction
and is negligible for reactions involving ground vibration of
H2 + OH.
B. State-to-State Study for H2 + OH f H + OH2.

Ultimately one wants to calculate state-to-state dynamical
quantities such as state-to-state integral cross sections and/or
differential cross sections for tetraatomic reactions. The state-
to-state calculation is significantly more difficult computationally
than the calculation of total (final state summed) reaction
probabilities. For H2 + OH f H + H2O, the reaction
probabilities are calculated by using the reactant Jacobi coor-
dinates to propagate the wave-function all the way into the
asymptotic space of the product arrangements.30,31 Figure 5
shows the energy-dependence of reaction probabilities from the
ground state of H2 + OH to produce various rovibrational states
of H2O.31 These individual probabilities show oscillatory
structures as a function of kinetic energy. The reaction seems
to produce more bending excited H2O as shown in Figure 5
where (020) and (010) products of H2O have relatively larger
reaction probabilities than (000) and (100) states. In particular,
the population of the ground vibrational state of H2O is very
small. By the principle of microreversibility, this implies that
the probability of the reverse reaction H+ H2O is very small
if the water reactant is in the ground vibrational state.
Figure 6 shows a complete rotational state distribution of H2O

(summed over vibrational states of H2O) at kinetic energies
between 0.2 and 0.6 eV.30 These distributions are Boltzmann-
like with the rotation quantum number of corresponding to the

maximum distribution increases from aroundj ) 4-6 as the
collision energy increases.
Recently, state-to-state calculation has also been reported by

Zhang and Light for the reverse reaction H+ H2O f H2 +
OH.33 All these state-to-state calculations, however, used a
single set of Jacobi coordinates for the reactant arrangement to
propagate the wave function all the way into the product
asymptotic space. Therefore the current method is computa-
tionally expensive for state-to-state dynamics calculations
because one has to employ a larger basis set and numerical grid
in order to cover physically relevant spaces for both reactant
and product arrangements.
At this stage, the progress in theoretical quantum dynamics

studies for H2 + OH reaction is challenging both the experi-
mentalists and quantum chemists. Firstly, accurate new PES
needs to be calculated using high levelab initio methods in
order to match the accuracy of the dynamics calculation for H2

+ OH reaction. Secondly, we need state-to-state experimental
results for detailed comparison of the dynamics for this reaction.
C. HO + CO Reaction. The quantum dynamics calculation

for HO + CO reaction is much more challenging computation-
ally than the direct H2 + OH reaction. First, the mass of HOCO
system is heavier, and secondly, the HO+ CO reaction is
dominated by resonances due to the existence of deep wells
supporting stable species ofcis- andtrans-HOCO complexes.54

Previous quantum dynamics calculations were carried out in
2D,55 3D,20,56,57and 4D (planar).20 The dynamics calculation
reported in ref 29 is the first quantum calculation in full physical
space using the PA5D treatment in which the nonreactive CO
bond is treated diabatically. The TD calculation for HO+ CO
requires one to propagate the wavefunction to more than 1 ps
in order to reveal resonance structures.29

We show in Figure 7 the total reaction probability from three
different rotational states of the reagents as a function of kinetic
energy for zero total angular momentum (J) 0). There are
many narrow resonances that overlap with neighboring ones as
can be seen in Figure 7. Although the reaction is exothermic
by about 0.97 eV and there is no barrier in the entrance channel,
the reaction probability is generally small (less than 10% in
Figure 7). The system does not seem to follow the reaction
path and therefore produces very little reaction, although the
HO+ CO PES has only a negligible entrance barrier along the
minimum energy path. From the propagation time needed to
converge the reaction probabilities, the lifetimes of most

Figure 5. Energy dependence of product vibrational state-specific
reaction probabilities from the reaction OH(00)+ H2(00)f H2O (V,j
) 0) for zero total angular momentum of H2OH. The vibrational state
label of H2O (ν1, ν2, ν3) follows the standard definition for triatomic
systems. Only the first four open vibrational states are explicitly shown.
The vibration-summed reaction probability (the upper most curve) was
scaled by a factor of 0.5 before being plotted.

Figure 6. Product rotational state distribution of H2O from the reaction
H2(00) + OH(00)f H + H2O(j) summed over all vibrational states
for kinetic energies of 0.10-0.6 eV.
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resonances are less than 1 ps with only a couple of them lasting
a little longer than that.
Although there are many similarities between the results of

the present calculation and previous reduced dimensionality
calculations, the present reaction probabilities are considerably
smaller in magnitude than those of reduced dimensionality
calculations in 3D and 4D20 as shown in Figure 8, underscoring
the importance of the multidimensional nature of the dynamics.
There are two possible reasons for the results of reduced
dimensionality calculations to be too large. First, the reduced
dimensionality calculations did not take into proper account the
zero-point energies associated with the neglected degrees of
freedom. Second, the reduced dimensionality calculations only
sampled most favorable geometry for reaction. It is thus
interesting to note that an earlier reduced dimensionality
calculation of Clary and Schatz56 gave the magnitude of reaction
probabilities in better agreement with the present results.
Obviously, there are uncertainties in how to properly take into
account the effect of neglected degrees of freedom in various
reduced dimensionality calculations.

IV. A New Approach to State-to-State Reactive
Scattering

A. A General Reactant-Product Decoupling Scheme.
The procedure to extract state-to-state dynamics information,

after the TD wave function has been propagated all the way
into the asymptotic product space, is straightforward as shown
in the previous section. The most difficult part is the determi-
nation of the wave function that is correct in the product
asymptotic space. We therefore encounter the notorious
problem of the choice of coordinates in quantum reactive
scattering again. If only total reaction probability is needed,
one can more or less avoid this problem by using the reactant
Jacobi coordinates as described previously. Although for state-
to-state calculations one could still use a single set of Jacobi
coordinates (either reactant or product) to carry out the wave-
function propagation throughout the whole space, it can only
be done at an immense computational cost as demonstrated in
recent state-to-state calculations for the H2 + OH reaction.30,31,33

We recently developed a general reactant-product decoupling
(RPD) scheme using the idea of divide and conquer to treat
state-to-state reactive scattering problems.58 In this approach,
one partitions the full wavefunction into the reactant and a sum
of all product components:

wherer andp are labels of reactant and product arrangements,
respectively. Since we only require the full wavefunctionΨ-
(t) to satisfy the TD Schro¨dinger equation, there is considerable
freedom in choosing the individual component. Our main
criterion is to confine each component to its corresponding
arrangement space with a minimum amount of overlap with
other components. For this purpose, we devise the following
uncoupledequations,

where -iVp is the negative imaginary potential (absorbing
potential) placed just beyond the transition state region to block
the wave functionΨr(t) from entering thep product arrangement
space. TheΨr(t) in eq 4.2 can be calculated using the reactant
Jacobi coordinates, exactly as discussed in previous sections
for the calculation of total reaction probabilities. The only extra
effort required here is to write out the quantityVpΨr(t) on the
strips of absorbing potential for the desired product arrangement-
(s) to a computer disk for later use.
Assuming the wave functionΨr(t) is perfectly absorbed

without any reflection, theΨr(t) is then the correct representation
of the full wave function in spaces before the turning on of
absorbing potentials. Thus the product wavefunctionΨp(t)
needs to be nonzero only in the correspondingpth product space
starting from whereVp is turned on. The solution ofΨp(t) is
therefore an inelastic scattering one and its propagation can be
naturally carried out using the product Jacobi coordinates,
independent of the rest of the product arrangements A split-
operator propagator can be found forΨp(t)58

whereΨ̃p(t) ) Ψp(t) + ∆ / 2pVp|Ψr(t).
The calculations forΨr(t) andΨp(t) are relatively straight-

forward by using their respective Jacobi coordinates. The main
tricky part of this scheme is to make sure that the absorbing
potentials are smooth enough to prevent any wavefunction
reflection and to generateVpΨr(t) in the product arrangement
basis representation in eq 4.3. The former has to be checked

Figure 7. Reaction probabilities of HO(V ) 0,j1) + CO(V ) 0,j2) as
functions of kinetic energy for (j1j2)d(00), (10), and (01).

Figure 8. Comparison of present result with reduced dimensionality
calculations from ref 20. Dashed curve and dotted curve are 3D and
4D results from ref 20, respectively. Solid curve is the PA5D result
from the present calculation.

Ψ(t) ) Ψr(t) + ∑
p

Ψp(t) (4.1)

{ip∂t |Ψr(t)〉 ) H|Ψr(t)〉 -i ∑p Vp|Ψr(t)〉

ip
∂

∂t
Ψp(t)〉 ) H|Ψp(t)〉 +iVp|Ψr(t)〉

(4.2)

|Ψ̃p(t + ∆)〉 ) e-i/pH∆|Ψ̃p(t) + ∆
p
Vp|Ψr(t + ∆)〉 (4.3)
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by numerical convergence test in actual calculations, and the
latter requires a coordinate transformation between the Jacobi
coordinates of the reactant and product arrangements. Since
the coordinate transformation forVpΨr(t) has to be done at each
time step, it is crucial to use highly efficient quadrature schemes
to minimize the number of points in generatingVpΨr(t). We
show in the following a highly efficient quadrature scheme based
on the general theory of collocation method for our particular
application.
B. A Multidimensional Collocation-Quadrature Scheme.

Our motivation is to devise an efficient quadrature method with
the least number of quadrature points to accurately evaluate the
following integral

by a finite summation

wheren(q) areN linearly independent basis functions,qi areN
pre-fixed quadrature points,fi ) f(qi), andW is an undetermined
weighting matrix. For simplicity, we deal with a one-
dimensional model and orthogonal basis set although the method
can be trivially generalized to multidimensional case and to
nonorthogonal and nondirect product basis set. If we assume
that the functionf can be adequately represented by an expansion
in terms ofN basis functionsn(q), we then require that eq 4.5
be exact! Thus we obtain the matrix equation

whereNin ) n(qi) andI is the identity matrix. The solution to
eq 4.6 determines the matrixW

Thus for any functionf the integral in eq 4.4 can be numerically
evaluated as

and the error of the integral is directly related to the incomplete
representation of the functionf by theN basis functionsn(q).
Equation 4.8 can also be viewed as a general transformation
relation between basis representationIn and pointwise repre-
sentationfi of the functionf(q), except that the transformation
matrix is in general not unitary here. This quadrature scheme
for evaluating the integral in eq 4.4 is actually a special
application of a general theory called collocation method.59

The above quadrature scheme is quite general and can be
applied when basis functions are nonorthogonal, multidimen-
sional, and nondirect product. We can now generalize eq 4.7
to

whereOmn ) 〈m|n〉 is the overlap matrix of the basis functions
and the quadrature points are now multidimensional and denoted
asqji. So far the choice of quadrature pointsqji has not been
discussed and in principle they can be arbitrary chosen as long
as the inverse in eq 4.7 exists. However, a good choice will
help reduce the error due to the incompleteness of the basis
set. For one-dimensional basis functions, a natural choice of
points would be those obtained from discrete variable repre-
sentation (DVR) method.60,61 The systematic choice of quadra-

ture points for multidimensional, nondirect product basis
functions is not obvious at all and needs to be explored in the
future.
Excellent state-to-state results have recently been obtained

for the atom-diatom reactions H+ H2
62 and D+ H2.63 At

this stage, it is very promising to extend the RPD approach to
tetraatomic reactions and beyond.

V. Discussions and Conclusions

We have provided a current account of the recent develop-
ment in TD quantum wavepacket approach to tetraatomic
reaction dynamics including the most recent RPD (reactant-
product decoupling) method for state-to-state reactive scattering
dynamics. Various numerical techniques for practical applica-
tions are also presented in considerable detail. Specific ap-
plications of the TD methods and the results of those applica-
tions to several tetraatomic reaction systems are shown as
demonstrations, with special emphasis given to the benchmark
H2 + OH reaction including the most recent state-to-state results.
In particular, we would like to reiterate the general nature of
the RPD method presented in this paper and its important
applications as a highly efficient computational approach for
studying state-to-state reaction dynamics for polyatomic systems
using the strategy of divide and conquer. The collocation-
quadrature (CQ) scheme presented in this article is a general
and efficient numerical approach for fast and accurate evaluation
of integrals involving a basis set expansion. Its potential
application to integrals involving multidimensional, nondirect
product basis functions is very promising. Test applications of
the RPD method, combined with the collocation-quadrature
(CQ) scheme, to the three-dimensional state-to-state calculation
for H + H2

62 and D+ H2
63 show excellent results. Further

extensions of the RPD method to more general applications are
also being reported.64

We believe that the TD approach currently provides the best
hope for further extending accurate quantum dynamics studies
to polyatomic reaction systems involving more than four atoms
due to its relatively slow scaling of computational effort with
the number of basis functions (cpu∝ NR (1< R < 2)). For this
purpose, we need to further develop efficient numerical
techniques to make dynamics calculations possible for even
larger systems. There are several aspects for future development
of TD methods for applications to larger polyatomic systems.
First, one should always try to minimize the total number of
active degrees of freedom for a given polyatomic system by
identifying those nonreactive or spectator coordinates and
treating them either adiabatically or diabatically without much
loss of dynamics information, and thereby eliminating them from
explicitly coupled dynamics calculations. Second, we need to
develop more efficient basis function optimization techniques
in order to drastically reduce the number of basis functions in
the wave function expansion.
Finally, in view of the recent rapid progress in the develop-

ment of accurate quantum dynamics methods for reaction
dynamics, it is very important to call for developing more
accurate and reliable means for fast calculation of potential
energy surfaces for chemical reaction systems if we want to
study reaction dynamics correctly, make closer contact with
experiments, and make reliable dynamical predictions. The
recent development of dynamical theory is also challenging the
experiment to produce reliable state-to-state dynamical quantities
for detailed comparison with theoretical predictions.
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