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The time-dependent quantum wavepacket approach has proven to be a powerful computational approach for
studying large scale quantum reactive scattering problems involving three or more atoms. This article presents
an account of some recent development of time-dependent wavepacket methods for accurate quantum dynamics
calculation of tetraatomic reactions in full dimensional space. The salient features of the time-dependent
approach and important computational strategies that have been employed to successfully calculate state-
specific reaction dynamics for realistic four-atom reactions are discussed. Some results from the application
of the time-dependent methods to several specific reactions, in particular the benchimia®HH reaction,

are presented. The article is then highlighted with the presentation of a general repobaliuict decoupling

method for state-to-state reactive scattering study. Finally, the future outlook of the theoretical study of
polyatomic reaction dynamics is discussed.

I. Introduction tational methods?! and the rapid increase in the speed of
modern computers, tremendous progress has been made during
the past decade in the theory and computation of atdistom
reactive scattering. Rigorous and detailed quantum dynamics
calculations for H+ H, and other simple triatomic reactions in
three-dimensional space have been reported, and some excellent
agreements between exact quantum dynamics calculations and
experiments have been obtained for+HH, and its isotopic
reaction using algebraic variational methods and hyperspherical
coordinate methods as recently reviewed in ref 2. Very recent
dynamics calculations for H- H,'2 and F+ Hy!3 show that

the remaining discrepancy between dynamics calculation and
experiment for these two systems appears to be entirely
attributable to the deficiency in the part of the potential energy

theoretical endeavors are a formidable computational task atSurface (PES) or its proper treatment in the dynamics calculation,

best because quantitatively accurate calculations for the majority"0t in the part of the dynamics calculation itself.
of chemical reactions are enormously complex due to inherent Of more practical interest to chemistry communities is,
mathematical difficulties in solving the many-body Satinger however, polyatomic reactions that involve more than three
equation. atoms. But going beyond the aterdiatom to polyatomic
Beside huge computational costs required in electronic reactive scattering presents a new grand challenge to quantum
structure calculations to generate accurate potential energydynamicists. The major challenge in theoretical treatment is
surfaces, which is outside the topic of the present article, the how to handle the exponential increase of computational cost
quantum reactive scattering calculation itself presents a majordue to the increase of mathematical dimensionalities when the
challenge to theoretical dynamicists in the study of reaction number of atoms in the system increases. For example, the
dynamics. From the very beginning, the theory of quantum dimensionality (internal degrees of freedom) increases from
reactive scattering has focused on the development of compu-three for a triatomic system to six for a tetraatomic system
tational methodologies for atondiatom reaction A+ BC: the two-fold increase in dimensionality! Since the addition of each
simplest possible chemical reaction systems. In particular, the atom adds three internal degrees of freedom to the system, it is
H + H, and its isotopically substituted reactions have dominated interesting to note that the transition from triatomic to tetra-
the theoretical and computational study in reactive scattering atomic systems causes the maximum relative increase in
for more than two decadés. Since the first report of three-  dimensionality (100%). Thus the rigorous dynamical treatment
dimensional quantum calculations for the4HH, reaction on for tetraatomic reactions is hardly a trivial extension of the
the empirical PK2 potential energy surface in 1976 took previous treatments for triatomic reactions and its success is a
another decade or so for theoretical chemists to fully develop major advance in reaction dynamics. In fact, a number of
general and powerful numerical methods to compute atom computational methodologies that work effectively for simple
diatom reactions. Thanks to the development of new compu- triatomic systems prove difficult or even impossible to apply
at present to polyatomic reactions due to the requirement of
€ Abstract published ilAdvance ACS Abstractddarch 15, 1997. impractically large computational resources. For example, in

The ability to accurately predict the outcome of a chemical
reaction in detail on the basis of first principles has long been
a holy grail for theoretical chemists since the discovery of
quantum mechanics in 1920s. It was known that chemical
reactions are results of molecular collision processes which can
be rigorously described by quantum reactive scattering theory.
In principle, the whole scenario seems rather straightforward.
First, one performab initio quantum chemistry calculations to
generate electronic energies at various nuclear configurations
and to fit them into a global potential energy surface. Second,
one performs quantum reactive scattering calculations to obtain
detailed dynamics informations such as reaction probabilities,
cross sections, rate constargs; In practice, however, such
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algebraic variational approach, one is required to invert the B D
Hamiltonian matrix to solve linear algebraic equations. Even

for a simple tetraatomic reaction like;H OH, the size of the ré %/ 6,
Hamiltonian matrix is prohibitively too large to be inverted / R g

directly on today’s computers. It is therefore necessary to utilize / ‘

alternative methods such as iterative methods to solve linear A c

algebraic equations due to their lower computational scaling Figure 1. Jacobi coordinates for the reaction ABCD — A + BCD.
than that of matrix inversion. Thus the critical measure of the The angles is the out-of-plane torsional angle.

applicability of any method to polyatomic reactions is the scaling - _ .
of its computational cost with respect to the number of basis Probabilities over a wide range of energies. The TD approach

functions or degrees of freedom. Many standard time- of directly provides dynamics information in real time which
independent scattering methods such as variational methods ofreatly facilities the analysis of the underlying dynamics. We
propagation methods scale &8 with the number of basis will present in this article some basic computational methods
functionsN and are thus difficult to extend to large systems. and numerical techniques of the TD wave packet approach to
Until a few years ago, the reduced dimensionality approach reactive scattering prqblems as well as some applications of
(RDA) of Bowman and co-worketé and Clary and co- the methods to realistic four-atom reactions in order to help
workersS provided the only viable means for tackling the four- Provide a clear picture of the status of recent theoretical/
atom reactive scattering problem in which a four-atom reaction cOMputational development in this field. Most computational

system is reduced to an effective atediatom system through ~ 'eSults presented in this article are for the benchmark 1OH
elimination of three internal coordinates, either by applying '€action. In addition, we will also present a newly developed

adiabatic approximation for three internal angular varidles 9€neral reactantproduct decoupling (RPD) method which is

or by restricting the system to certain geometric configuraiéns. extrgmely promising for futgre state-to-state reactive scattering
Although the RDA methods are computationally simple to apply Studies of polyatomic reactions. ,

and can often give reasonably good results when all the missing This article is organized as f_oIIows: Section Il presents the

degrees of freedom are properly accounted for, they generally9eneral methodology of the time-dependent wavepacket ap-
do not give definitive results and/or predictions of the dynamics Proach to quantum reactive scattering and various numerical
of the reactive scattering problem for a given potential energy €chniques that are crucial to the success of the TD approach
surface. The status is similar for other dynamically approximate [© |arge scale reactive scattering calculations for polyatomic

methods including the I0SA methd8ithe mixed quantum/ reactions. S_ectlon Il presents some benchmark re_sults from
classical method and full-dimensional planar modei&:20 the applications of the TD methods to several important

These approximate methods are very useful for studying the tetraatomic reactions including-H- OH and its isotopically
dynamics of complex reactions for which rigorous dynamical SuPstituted reactions and the resonance-dominatedtHtD

methods are not available. reaction. In sectiqnl IV, we di_scuss a new and gengral
The ultimate goal in quantum reaction dynamics is to develo methoqlology for gfflClent calculat!on of state-to-state reactive
rigorous quantum methods that can provide definitive results SCattéring dynamics for polyatomic reactions using the idea of
and/or predictions for dynamics of polyatomic reactions for divide and conquer. Finally, we give a brief discussion about
given potential energy surfaces. Significant progress has beerfh® futur.e prospect of 'ghe.TD approach and speculate on possible
made in that direction during the past few years, and the abovefUture directions in this field.
goal has been at least patrtially realized for a few important .
benchmark tetraatomic reactions. Rigorous quantum reactive”' Time-Dependent Wavepacket Approach
scattering calculations in full-dimensional space have been A. Selection of Coordinates and Basis Functionsin this
reported for reactions of $H OH,21725 DH + OH,?6:27 D, + section, we are primarily interested in the calculation of total
OH28 and HO+ CO® including calculations of initial state  (final state summed) reaction probabilities while the discussion
specific cross sections for HH OH and its isotope reac- on complete state-to-state reactive scattering calculation will
tions 22232728 Most recently, quantum state-to-state calculations be given in the following sections. As is well-known to the
have become available for the,H- OH reactiod®3! and its reactive scattering community, the choice of suitable coordi-
reverse reaction H- H,0.32:33 nates, as well as the basis functions associated with them is at
The main driving force behind the recent success of rigorous the heart of any reactive scattering problem. The Jacobi
gquantum dynamics studies for tetraatomic reactions mentionedcoordinates are natural coordinates for describing wave functions
above is the development of efficient time-dependent (TD) that are confined primarily to the corresponding arrangement

methods for solving the time-dependent Schinger equatio?f channel space. Thus, the Jacobi coordinates of the reactant
arrangement is generally a good choice for calculating initial-

ih Q‘P(t) = HW() (1.1) state-selected but final-state-summed reaction prpbabm'gles

t because we only need to propagate the wave function to just

) beyond the transition state region. Specifically for a diatom
The TD wavepacket approach has some very attractive featuresdiatom reaction AB+ CD to produce atomtriatom products
for large-scale numerical calculations. The most fundamental A + BCD and/or B+ ACD, the Hamiltonian expressed in the

property of the TD approach is that it solves an initial value reactant Jacobi coordinates shown in Figure 1 in full dimensions
problem and calculates the wave function for one initial state (6D) can be written as

at a time. Therefore, for any desired initial state, the compu-

tational effort in the TD approach is proportional® (1 < o B2 52 (j — le)z ﬁ
< 2)3536 whereN is the number of basis functions (a very large H = — 2 32 + TR +h(r) +hy(r) + ——+
number). This reduction in computational scaling is crucial for 3 1

large-scale quantum calculations as mentioned above. Also in B
the TD approach, a single wavepacket calculation can give 5
dynamical quantities such & matrix elements or reaction 2u55

+ V(T, T» R (2.1)
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whereu is the reduced mass between the center-of-mass of AB where y;, are spherical harmonics.

and CD,J the total angular momentum operator, gndndj,
the rotational angular momentum operators of AB and CD,
which are coupled to formj;,. The reference diatomic
vibrational Hamiltoniarhi(r;) (i = 1 and 2) is defined as
h® o
hy(r) = — 2, o2 +Vi(ry)

2.2)

whose eigenfunctions and eigenenergies¢garande,,, respec-
tively, andV; is a reference diatomic vibrational potential. The
expression for the Hamiltonian given in terms of the Jacobi
coordinates for the A+ BCD arrangement is very similar.
Before the numerical solution for the TD wave function can

Dai et al.

Note in eq (2.5) the
restrictione(—1)1tzt2t) = 1 for K = 0.

B. Time Propagation of the Wave Function. The split-
operator propagat®tis used to carry out the time propagation
of the wavepacket

WMR, T, Ty tHA) =
e*iHoA/Ze*iUAe*iHoA/leJMG(_Ié, —r-l, —r-z, t) (27)

where the reference Hamiltoniadty is defined as

h?
Ho=—5-—= t hy(ry) +hy(ry)

2u oR? (28)

be started, one needs to find a suitable basis set to expand th@nd the effective potential of operatdrin eq 2.7 is defined as

TD wave function. For a general diaterdiatom reaction of
the type AB+ CD, one can expand the TD wave function in
terms of body-fixed (BF) rovibrational eigenfunctions defined
in terms of the reagent Jacobi coordinate®,&s

IMe (B = = —
W, (R Ty, Ty 1) =

> Frkoggk, OUIRS, ()9, ()K" (R Ty, ) (2.3)

nv,J,K

wheren is the translational basis label, denotes %1, v2), |
denotesjg, j2, j12), (vo, jo) the initial rovibrational state, and
the parity of the system defined as= (—1)1tiz*- with L being

the orbital angular momentum quantum number. The deter-

mination of the TD coefficienEpi , i « (t) gives the solution
of the TD Schidinger equation. In order to save computational

costs, we separate the interaction region from the asymptotic

region in the dynamics calculatiéfi;®® A simple way to

implement this is to use nondirect product basis functions,

similar to the ideas of ref 3739 and to define normalized
translational basis function as

/ nt(R— R
2 sin ( 1) vy < Ve,
le(R) — Ri— R R, — R
" 2 mR-RyY
Sin V1 = 1/asy
Rz - Rl Rz - Rl
(2.4)

where R, and Ry define, respectively, the interaction and
asymptotic grick® andvasyis the number of energetically open

G-ip* i i
2,uR21 +2,ulr2 12+V(r1,r2,R)=
1'1

2u,15

U=

Vi + V(T1, T2, R) (2.9)

The matrix version of eq 2.7 for the expansion coefficient vector
F is then given by

F(t+ A) = exp(—iHyA/2) expiUA) exp(—iHA/2)F(t)
(2.10)

whereHy is the diagonal matrix defined in ref 23.

At a given quadrature poinRf, rin, r21), the standard method
for handling the potential operat@r V2 is by diagonalizing
the potential matriXJ in the coupled angular basi%"“ as is
done in previous studied:2® This approach preserves the
unitarity of the operatoe=V2 and is efficient when the size of
the angular basi&y* is relatively small. However, if the
coupled angular basis is large, this approach can become
computationally expensive because one needs to calculate and
store all the transformation matrices that diagonalize the
potential matriced) at all the radial grid points. Thus for large
systems, the matrix diagonalization method will require a large-
memory computer. We thus devise a normalized quadrature
scheme for treating angular quadratures which avoids explicit
matrix diagonalization and therefore does not require large
computer memory for matrix storage. It is worthwhile to point
out that this normalization procedure is only necessary when
multidimensional nondirect product basis functions, such as the

vibrational states plus a few closed vibrational states of the coupled angular momentum eigenfunctions of eq 2.6, are used.
reactive AB diatom. The use of nondirect product basis makes For direct product basis functions, one can use the DVR method
it simple to separate the asymptotic region from the interaction t0 rigorously preserve the unitarity of the propagator. This

region, and thus a substantial amount of computational savingsnormalization procedure has been discussed in ref 27 and 28

can be realized23
The coupled total angular momentum eigenfunctigf in
eq 2.3 can be written &&%041

2J+1 i
81 [D‘IJ(,MY}l?K +

j2

Y}]Il\/le — (1+ 6KO)*l/2

j+Fiotiitd md
e(_1)]+ JoT)12 DfK,M

YizK] (2.5)

ld2

WhereD‘}lyM(GCI)‘I’) is the Wigner rotation matrf% with three

Euler anglesp®W¥) and Y}lfK is the angular momentum
. . 2

eigenfunction 0fj;5,23:4041

Y50y, 02 6) =
Z[ﬂlmlj K= my|j 1 K iy (01, O k-, (02, 9) (2.6)

and we present it briefly in the following.
Utilizing the split-operator scheme again, we can split2
as

—iUA _

" — VA2 —iIVA VA2

e e "e (2.11)

whereV,,; andV are defined in eq 2.9. The operation of the
operatore VA2 on the wave function is straightforward because
it is diagonal in the coupled angular momentum representation.
The exponential potential operaterV4 is now treated by
guadrature approximation for which we define a transformation
matrix Q by

Qi = VW W W, 81,6, 6] YO (2.12)

where 01 6 ¢) are angular quadratures and;(\W, W) are
the corresponding angular weights. Thus eq 2.11 is ap-
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proximated by the angular quadrature probabilities is to explicitly write down the asymptotic form of
the time-independent solution in the product arrangement space
e UA = g Vil (3t g VA (g Viadi2 (2.13)

. . Ry u e_ikiROL

whereQ™ is the complex conjugate @. In general, one does 1/)+‘(E) Bl

not need to store the large matrd but only a few small o 22 \/—

submatrices contained in eq 2.12. k
Because the transformation matf which transforms from s

coupled angular momentum representation to grid representation, Z Simai _‘,7 - (2.18)

is not unitary, we therefore use a simple method to retain the o '

unitarity of the propagator. Specifically, we renormalize the K

wave fungtion after it has been propagateq by t,he opeeatty. where the first term in the above equation vanishegfer a.
The detailed procedure has been described in refs 27 and 29Using eqs 2.15 and 2.18, it is straightforward to obtain the

C. Potential-Averaged Treatment for Rigid Bonds. For following expression for the state-to-staematrix element
a polyatomic reaction with a nonreactive bond, such as the OH

77onimot/)’ +

bond in the H + OH reaction, one often does not have to treat 1 K _ . .

the nonreactive OH bond length explicitly in the dynamics ~ §(E) = —— , [5—— e ™ ﬂ " dt €™ R, G g ()0
calculation. The PA5D model treats the vibration of the a,i(E) ZWﬁ

nonreactive CD bond diabatically which results in an effective

5D model in which the effective 5D potential is simply obtained 1 k; kR, [ HEL

by averaging the original PES over the vibrational function of = G Zn_ﬂﬁ e f_m dte™ AR, 1) (2.19)

the nonreactive CD (or OH) bond. Specifically, the interaction

potent!aIV(Fl, T2, R ineq 29is ob'galned by averaging the 6D | the above approach, one simply calculates the amplitude of

_potent|al over the vibrational function of the nonreactive €D, 0 scattering wave functioy; (after projecting out the final

1€, states) by Fourier transforming the TD wavefunction at a

- Ty S dividing surface in the product asymptotic region. However,

V(T T R = IIsz'V(rl’ M2 R)|¢V2D (2.14) the asymptotic radial function has to be known exactly at the

) ) ) o dividing surface, being plane wave function or Hankel function

and the rotation constant for the nonreactive diatom CD is given (see discussion in ref 45). For example, ifRy, the radial

by B,, = @bv 1/ 2ur3lop, D The study in ref 23 showed that asymptotic solution is the functioBy(R.) instead of the plane

the PASD treatment is siénificantly better than the simpler rigid- wave, one needs to replaeef=(R.) in eq 2.19.

bond treatment and that it gives reaction probabilities that are  If one only wants the absolute value of tBenatrix element

essentially indistinguishable from those of full 6D calculation |Si| or the probabilityP; = |S;|2, e.g., for calculations of integral

for the OH + H» reaction. This is very encouraging for cross sections, one can use the flux formalism to calculate

polyatomic reactions because it demonstrates the practicalityreaction probabilities,

of eliminating the spectator bond lengths from explicit dynamics

calculations. |SiI? = 27HRe[Ax(R;, E)7,Aq(R;, B)llr=r.
D. Extraction of Initial State-Selected Dynamics. From
the propagation of an initial wavepacketi(0)O] the time- _ 2nh?

independent (Tl) wave functionpi*(E) can be obtained by

d
Fourier transforming the TD wave functith

Mg

whereAs(E, Ry) is the radial scattering amplitude obtained from

T _ 1 ®  R(E—H)t
YvBE =% /.¢ 0t  (2.15)
I 2na(E) f I Aq(Rs, E) = [Rﬁ“]'ﬂfIwZi(E)D
and similarly for the derivative of the wave functiapfr'(E). _ 1 00 i/KEt
The coefficients(E) is easily evaluated from the free-energy- o 27ha,,(E) f—oo dt €7 IRy el oa (DL

normalized asymptotic functiopt(E) asai(E) = [¢i(E)|yi(0)CE3

The total reaction probability from a given initial statean be _ 1 o ihEt

calculated by using the flux formif& ~ 2nha, () f_m dt €™ Aq(Rg, 1) (2.21)
1

P(E) = Z ISS1° =@ E)Fly; ()0 (216)  The flux is calculated at a surface defined Ry= R_ in the
product asymptotic space beyond which the final state interac-
tion is over. Therefore the flux is invariant with respect to
further increase of the distance. The main advantage of using
this flux formula is that one does not need to know the exact
form of the radial function aR_. Physically speaking, this is
1 \v4 2 21 kR because the elastic scattering only affects the phase of the radial
¢ko(R) = (—2) exp[-(R— R)7267]e ™" (2.17) function and thus does not affect transition probabilities. This
70 will in general enable one to obtain converged state-to-state
reaction probability at a relatively shorter radial distance.

The initial wavepacketyi(0)Ois usually chosen to be a
Gaussian function with an average momentkgtraveling
toward the interaction region

multiplied by the internal functions;0in eq 2.3. In actual
propagation, the TD wavefunction is absorbed at the edges of
the grid to avoid boundary reflectidf.

E. Extraction of State-to-State Dynamics. The simplest A. Initial State-Selected Study for the H, + OH Reaction.
approach to extract state-to-st&enatrix elements or reaction  In this subsection, we show some results of application of the

Ill. Applications to Four-Atom Reactions



2750 J. Phys. Chem. A, Vol. 101, No. 15, 1997 Dai et al.

50
I — H,+OH
030 ] e HD + OH
40} ——-D,+OH
z
3 © -
£ 020 o 30 a e /1
g : e
S g ey
5 » - -
g g >0 v
o 1S) // Pid
0.10 payad
gyl
1.0 i ]
7
-
- //
A ,.-f//
0.00 == < ‘ . 0o T ‘ '
0.10 0.20 0.30 0.40 050 0.60 0 550 090 0.0 050 0.60
Translational energy (eV) Kinetic energy (eV)
Figure 2. Comparison of reaction probability for all three reactions  Figure 3. Comparison of integral cross sections for all three reactions
from initial ground state of the reactant. from initial ground state of the reactant. The triangles are the RBA

(rotating bond approximation) cross sections from ref 47 fprH-OH.
TD approach described in the previous section for calculations
of total (final state summed) reaction probabilities and cross
sections for H + OH and its isotopically substituted reactions
HD + OH and B + OH. The details of the calculation are
not given here since they have been reported previously. The  _;;4 [
potential energy surface (PES) used far H OH reaction is
the Walch-Dunning—Schatz-Elgersma PES slightly modified
by Clary#”

The calculation for H+ OH reaction in ref 23 demonstrated
that the potential averaged treatment (PA5D) gives essentially
the same result as the full 6D treatment for this reaction. Thus,
the potential averaged treatment for the nonreactive bond is  _,, |
sufficiently accurate at least for total reaction probabilities, and
the 6D reactive scattering problem can be effectively reduced
to a 5D problem. We expect this conclusion to be generally

-11.0 T -

— D,+OH

-13.0

logK(T),(cmAISec)

true for similar reactions involving nonreactive or spectator -150,5 3 2.0 25 30 35
bonds. This should result in significant savings in computational 1000/T
effort for polyatomic reactions. Figure 4. Comparison of reaction rate constants for all three reactions

In Figure 2, we show reaction probabilities of all three from initial ground state of the reactant.
isotopic reactions as a function of incident kinetic energy from
the initial ground state. The reaction probability is of the order J > 0. For the H + OH reaction at ground initial state, the
P(H) > P(HD) > P(D,) at fixed kinetic energies. However, cross sections for all three reactions as a function of kinetic

considering the vibrational energy difference among HD, energy are shown in Figure 3. The order of cross sections, as
and Dy, the reaction probability is about the same magnitude a function of kinetic energy, satisfiesy, > owp > op,. We
as a function of total energy (kinetic energy zero-point also show the cross sections from the reduced dimensionality

energy). The study on the rotational state dependence of thecalculation (RBA) of ref 47. The comparison shows that the

reaction probability shows strong steric effect as discussed in RBA cross sections are significantly larger than the full-

refs 26-28. In particular, the maximum of the reaction dimensional results.

probability always shows up for the= 1 state of H(D), which The initial state-specific thermal rate constant is given in terms

is believed to be a general phenomenon for collinearly domi- of the total integral cross section of eq 3.1 by

nated reactions at zero total angular momentfinm addition, kT2

the vibrational excitation of His found to significantly enhance _ [L\[eKT -2 (@ -

the reaction probability while vibrationgl excita%?on of the r”OjO(T)_(Z)(Jw (k) L d&E, exp( E‘/kT)OVojo(E‘)

nonreactive OH(D) bond has little effect on reactfén. (3.2
The reaction cross section for a specific initial state is obtained

by summing the reaction probabilitieB;‘;OKo over all the

partial waves (total angular momentui))

)

where Eis the translational energy. An extra factor'f has
been included in eq 3.2 to account for the fact that only half of
the reagent K{*y) + OH(%x) collisions access théA' surface

. which correlates with the products,8(*A’) + H(?A").*6 We

0,jf)=—————F (21+ 1)P*  (B) note that the thermal rate constant defined in the above equation
o @, + D@, +1) kz.%e "dofo involves only Boltzmann averaging over translational energy
(3.2) but not rotational energy. This is not the standard definition of

thermal rate constant in which all the rotational states are
wheree is the parity andKo denotes all the initial rotation  Boltzmann averaged. Therefore, comparisons of the present
projection quantum numbers. Since the exact close-couplingrate constants with experimental and other theoretical calcula-
calculation forJ > 0 is extremely expensive computationally, tions should be treated with caution. At temperatures below
the standard CS approximati§f®is used in calculations for 1000 K, the rate constant for the,H- OH and its isotope



Feature Article J. Phys. Chem. A, Vol. 101, No. 15, 1992751

H, (v,=0,j,=0) + OH (v,=0,j,=0) -> H + H,O (n,,n,,n,,j=0) 0.040
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0.10 0.20 0.30 0.40 0.50 Angular Momentum of H,O
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) Brew _— ... Figure 6. Product rotational state distribution of® from the reaction
Figure 5. Energy dependence of product vibrational state-specific H2(00) + OH(00)— H + H,0(j) summed over all vibrational states
reaction probabilities from the reaction OH(08)H2(00) — H20O (v,j for kinetic energies of 0.160.6 eV.
= 0) for zero total angular momentum ot®H. The vibrational state
label of HO (v1, v,, v3) follows the standard definition for triatomic

systems. Only the first four open vibrational states are explicitly shown. maximum distribution increases from arouper 4—6 as the
The vibration-summed reaction probability (the upper most curve) was collision energy increases.

scaled by a factor of 0.5 before being plotted. .
Recently, state-to-state calculation has also been reported by
Zhang and Light for the reverse reaction‘HH,O — H, +
reactions satisfies the relatioks, > kap > kp, These  OH33 All these state-to-state calculations, however, used a
relationships are somehow similar to the triatomic reaction of single set of Jacobi coordinates for the reactant arrangement to
O + H; and its isotope reactiort8:>® In view of the propagate the wave function all the way into the product
deficiencies of the WDSE potential energy surface and the fact asymptotic space. Therefore the current method is computa-
that theoretical rates are not thermally averaged over the initial tionally expensive for state-to-state dynamics calculations
states, the agreement of theoretical rate constant with experi-pecause one has to employ a larger basis set and numerical grid
mental measurement is quite reasonable as discussed in ref 23n order to cover physically relevant spaces for both reactant
Our study also found that the WDSE PES has artifacts that and product arrangements.
cause artificial resonances at very low kinetic energies (about At this stage, the progress in theoretical quantum dynamics
0.02 eV)??* The artifacts have a significant effect on the studies for H + OH reaction is challenging both the experi-
calculated integral cross sections and rate constants for vibra-mentalists and quantum chemists. Firstly, accurate new PES
tionally excited H for the reaction of H+ OH. The effectis  needs to be calculated using high lewd initio methods in
less significant for vibrationally excitedJn D, + OH reaction order to match the accuracy of the dynamics calculation for H
and is negligible for reactions involving ground vibration of -+ OH reaction. Secondly, we need state-to-state experimental
Hz; + OH. results for detailed comparison of the dynamics for this reaction.
B. State-to-State Study for b + OH — H + OH.. C. HO + CO Reaction. The quantum dynamics calculation
Ultimately one wants to calculate state-to-state dynamical for HO + CO reaction is much more challenging computation-
quantities such as state-to-state integral cross sections and/oglly than the direct 1+ OH reaction. First, the mass of HOCO
differential cross sections for tetraatomic reactions. The state-system is heavier, and secondly, the HOCO reaction is
to-state calculation is significantly more difficult computationally dominated by resonances due to the existence of deep wells
than the calculation of total (final state summed) reaction supporting stable species @& andtransHOCO complexe&?
probabilities. For H + OH — H + H:0, the reaction  Previous quantum dynamics calculations were carried out in
probabilities are calculated by using the reactant Jacobi coor-2D 55 3D,2056.57gnd 4D (planarf® The dynamics calculation
dinates to propagate the wave-function all the way into the reported in ref 29 is the first quantum calculation in full physical
asymptotic space of the product arrangeméhis. Figure 5 space using the PASD treatment in which the nonreactive CO
shows the energy-dependence of reaction probabilities from thebond is treated diabatically. The TD calculation for HOCO
ground state of B+ OH to produce various rovibrational states requires one to propagate the wavefunction to more than 1 ps
of H,03! These individual probabiliies show oscillatory in order to reveal resonance structues.
structures as a function of kinetic energy. The reaction seems \ye show in Figure 7 the total reaction probability from three
to produce more bending excitec® as shown in Figure 5 ifferent rotational states of the reagents as a function of kinetic
where (020) and (010) products ob® have relatively larger  energy for zero total angular momentuth=¢ 0). There are
reaction probabilities than (000) and (100) states. In particular, many narrow resonances that overlap with neighboring ones as

the population of the ground vibrational state ofCHis very can be seen in Figure 7. Although the reaction is exothermic
small. By the principle of microreversibility, this implies that  py about 0.97 eV and there is no barrier in the entrance channel,
the probability of the reverse reaction-HH,O is very small  the reaction probability is generally small (less than 10% in

if the water reactant is in the ground vibrational state. Figure 7). The system does not seem to follow the reaction

Figure 6 shows a complete rotational state distribution@®H  path and therefore produces very little reaction, although the
(summed over vibrational states of®) at kinetic energies  HO + CO PES has only a negligible entrance barrier along the
between 0.2 and 0.6 €¥. These distributions are Boltzmann- minimum energy path. From the propagation time needed to
like with the rotation quantum number of corresponding to the converge the reaction probabilities, the lifetimes of most
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after the TD wave function has been propagated all the way
into the asymptotic product space, is straightforward as shown
in the previous section. The most difficult part is the determi-
nation of the wave function that is correct in the product
asymptotic space. We therefore encounter the notorious
problem of the choice of coordinates in quantum reactive
scattering again. If only total reaction probability is needed,
one can more or less avoid this problem by using the reactant
Jacobi coordinates as described previously. Although for state-
to-state calculations one could still use a single set of Jacobi
coordinates (either reactant or product) to carry out the wave-
function propagation throughout the whole space, it can only
be done at an immense computational cost as demonstrated in
recent state-to-state calculations for thedHOH reaction?-31.33
. We recently developed a general reactgurbduct decoupling
Kinetic ghsgrgy ) 0.40 (RPD) scheme using the ideg of divide and conquer to treat
) ) o ) ) state-to-state reactive scattering probléfndn this approach,
Eﬂg{i%n?s' Oﬁi?ﬁgt‘i’g grrlzfab'f“t'.es ‘iH@(: 0j1) + CO = 0j2) as one partitions the full wavefunction into the reactant and a sum
9y fori{2)=(00), (10), and (01). of all product components:

P — ———— ' W) = W0+ S W) (4.1)
p
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T RAS b wherer andp are labels of reactant and product arrangements,
"“\w" ‘H“‘“ ‘ 7,‘ v respectively. Since we only require the full wavefuncti¥n
. e (t) to satisfy the TD Schidinger equation, there is considerable
! " pu ; freedom in choosing the individual component. Our main
o ;“‘:‘W‘: B ‘j criterion is to confine each component to its corresponding
o L arrangement space with a minimum amount of overlap with
D AR R R other components. For this purpose, we devise the following
\ - uncoupledequations,
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Fi?UF‘IE‘ ?- Cc;mpariSfOQOOf Bresﬁné result Witg criectjtucded dimensi%nglityd where —iV, is the negative imaginary potential (absorbing
om0 e e e 30 poentia)plced justbeyond he ansilon state egion 0 block
from the present calculation ' the wave function¥,(t) from entering the product arrangement
' space. ThaP(t) in eq 4.2 can be calculated using the reactant
resonances are less than 1 ps with only a couple of them IastingJaCOb' coordinates, exactly as discussed in previous sections
a little longer than that. for the calculation of total reaction probabilities. The only extra
Although there are many similarities between the results of effort required here is to write out the quantiéy'(t) on the
the present calculation and previous reduced dimensionality Strips of absorbing potential for the desired product arrangement-

calculations, the present reaction probabilities are considerably(S) to @ computer disk for later use.

smaller in magnitude than those of reduced dimensionality Assuming the wave functiofV(t) is perfectly absorbed
calculations in 3D and 48 as shown in Figure 8, underscoring  Without any reflection, th&(t) is then the correct representation

the importance of the multidimensional nature of the dynamics. Of the full wave function in spaces before the turning on of
There are two possible reasons for the results of reduced@Psorbing potentials. Thus the product wavefunctii(t)
dimensionality calculations to be too large. First, the reduced N€€ds to be nonzero only in the correspondiitigproduct space

dimensionality calculations did not take into proper account the Starting from wherev, is turned on. The solution d¥(t) is

freedom. Second, the reduced dimensionality calculations only Naturally carried out using the product Jacobi coordinates,
sampled most favorable geometry for reaction. It is thus independent of the rest of the product arrangements A split-

interesting to note that an earlier reduced dimensionality OPerator propagator can be found #p(t)>®

calculation of Clary and Sch&fmave the magnitude of reaction y _ _ A
probabilities in better agreement with the present results. Wt + A= e"’hHAPPp(t) + Py Vol (t+ A)D (4.3)

Obviously, there are uncertainties in how to properly take into
account the effect of neglected degrees of freedom in Variouswhere‘ilp(t) = Wy(t) + A/ 2RV, W,(0).

. iy .
o i W) 0= HIW L TV, W, ()0

reduced dimensionality calculations. The calculations fol¥,(t) and W,(t) are relatively straight-
. forward by using their respective Jacobi coordinates. The main
!S\.gat'to(\e Elrfw Approach 1o State-to-State Reactive tricky part of this scheme is to make sure that the absorbing
9 potentials are smooth enough to prevent any wavefunction

A. A General Reactant-Product Decoupling Scheme. reflection and to generaté,¥,(t) in the product arrangement
The procedure to extract state-to-state dynamics information, basis representation in eq 4.3. The former has to be checked
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by numerical convergence test in actual calculations, and theture points for multidimensional, nondirect product basis
latter requires a coordinate transformation between the Jacobifunctions is not obvious at all and needs to be explored in the
coordinates of the reactant and product arrangements. Sincduture.

the coordinate transformation fopW,(t) has to be done at each Excellent state-to-state results have recently been obtained
time step, it is crucial to use highly efficient quadrature schemes for the atom-diatom reactions H+ H,%2 and D+ H,.53 At
to minimize the number of points in generatikg®¥,(t). We this stage, it is very promising to extend the RPD approach to

show in the following a highly efficient quadrature scheme based tetraatomic reactions and beyond.
on the general theory of collocation method for our particular
application. V. Discussions and Conclusions
B. A Multidimensional Collocation-Quadrature Scheme. )
Our motivation is to devise an efficient quadrature method with ~ We have provided a current account of the recent develop-

the least number of quadrature points to accurately evaluate the™ent in TD quantum wavepacket approach to tetraatomic
following integral reaction dynamics including the most recent RPD (reactant-

product decoupling) method for state-to-state reactive scattering

|, = m|f0 (4.4) dynamics. Various numerical techniques for practical applica-

tions are also presented in considerable detail. Specific ap-

by a finite summation plications of the TD methods and the results of those applica-
tions to several tetraatomic reaction systems are shown as
|, ~ Z W, . (4.5) demonstrations, with special emphasis given to the benchmark

. H, + OH reaction including the most recent state-to-state results.
In particular, we would like to reiterate the general nature of
wheren(q) areN linearly independent basis functiorgs areN the RPD method presented in this paper and its important
pre-fixed quadrature pointf= f(g;), andW is an undetermined  applications as a highly efficient computational approach for
weighting matrix. For simplicity, we deal with a one- studying state-to-state reaction dynamics for polyatomic systems
dimensional model and orthogonal basis set although the methodusing the strategy of divide and conquer. The collocation-
can be trivially generalized to multidimensional case and to quadrature (CQ) scheme presented in this article is a general
nonorthogonal and nondirect product basis set. If we assumeand efficient numerical approach for fast and accurate evaluation
that the functiorf can be adequately represented by an expansionof integrals involving a basis set expansion. Its potential
in terms ofN basis functions(q), we then require that eq 4.5 application to integrals involving multidimensional, nondirect

be exact! Thus we obtain the matrix equation product basis functions is very promising. Test applications of
_ the RPD method, combined with the collocation-quadrature
WN =1 (4.6) (CQ) scheme, to the three-dimensional state-to-state calculation

for H + H%2 and D+ HJ53 show excellent results. Further
extensions of the RPD method to more general applications are
also being reporteéf
W =N"1 4.7) We believe that the TD approach currently provide_s the be_st
hope for further extending accurate quantum dynamics studies
Thus for any functiorf the integral in eq 4.4 can be numerically ~ to Polyatomic reaction systems involving more than four atoms
evaluated as due to its relatively slow scaling of computational effort with
the number of basis functions (cpLN* (1 < a < 2)). For this
I, =[N]. (4.8) purpose, we need to further develop efficient numerical
techniques to make dynamics calculations possible for even
and the error of the integral is directly related to the incomplete 1arger systems. There are several aspects for future development
representation of the functidnby the N basis functions(q). of TD methods for applications to larger polyatomic systems.
Equation 4.8 can also be viewed as a general transformationFirst, one should always try to minimize the total number of
relation between basis representatigrand pointwise repre-  active degrees of freedom for a given polyatomic system by
sentatiort; of the functionf(g), except that the transformation ~identifying those nonreactive or spectator coordinates and
matrix is in general not unitary here. This quadrature scheme treating them either adiabatically or diabatically without much
for evaluating the integral in eq 4.4 is actually a special 0SS of dynamics information, and thereby eliminating them from
application of a general theory called collocation metbfod. explicitly coupled dynamics calculations. Second, we need to
The above quadrature scheme is quite general and can b&lévelop more efficient basis function optimization techniques
applied when basis functions are nonorthogonal, multidimen- in order to drastically reduce the number of basis functions in

sional, and nondirect product. We can now generalize eq 4.7 the wave function expansion. _ _
to Finally, in view of the recent rapid progress in the develop-

ment of accurate quantum dynamics methods for reaction
wW=N"10 (4.9) dynamics, it is very important to call for developing more
accurate and reliable means for fast calculation of potential
whereOp,, = [in|nCis the overlap matrix of the basis functions energy surfaces for chemical reaction systems if we want to
and the quadrature points are now multidimensional and denotedstudy reaction dynamics correctly, make closer contact with
asq. So far the choice of quadrature poirgishas not been experiments, and make reliable dynamical predictions. The
discussed and in principle they can be arbitrary chosen as longrecent development of dynamical theory is also challenging the
as the inverse in eq 4.7 exists. However, a good choice will experiment to produce reliable state-to-state dynamical quantities
help reduce the error due to the incompleteness of the basisfor detailed comparison with theoretical predictions.
set. For one-dimensional basis functions, a natural choice of
points would be those obtained from discrete variable repre- Acknowledgment. We thank Dr. Dong H. Zhang who has
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